Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Crit Care ; 27(1): 226, 2023 06 08.
Article in English | MEDLINE | ID: covidwho-20232670

ABSTRACT

PURPOSE: A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. METHODS: This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. RESULTS: 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI - 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (- 1.17 ml/kg, 95% CI - 1.87 to - 0.44). CONCLUSIONS: IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23).


Subject(s)
COVID-19 , Pulmonary Edema , Respiratory Distress Syndrome , Humans , COVID-19/complications , Imatinib Mesylate/adverse effects , Lung , Double-Blind Method
2.
Thorax ; 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2313975

ABSTRACT

INTRODUCTION: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS: In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS: 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS: Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.

3.
Eur Respir J ; 62(1)2023 Jul.
Article in English | MEDLINE | ID: covidwho-2300060

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Biomarkers , Inflammation , Cytokines , Aging
4.
Cardiovasc Pathol ; 64: 107524, 2023.
Article in English | MEDLINE | ID: covidwho-2305846

ABSTRACT

BACKGROUND: Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. METHODS: Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. RESULTS: The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. CONCLUSIONS: Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart.


Subject(s)
Atrial Fibrillation , COVID-19 , Thrombosis , Humans , COVID-19/complications , COVID-19/pathology , Inflammation/pathology , Heart Atria/pathology , Thrombosis/etiology , Thrombosis/pathology
5.
Ultrasound J ; 15(1): 11, 2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2269044

ABSTRACT

BACKGROUND: It is unclear if relevant changes in pulmonary involvement in critically ill COVID-19 patients can be reliably detected by the CT severity score (CTSS) and lung ultrasound score (LUSS), or if these changes have prognostic implications. In addition, it has been argued that adding pleural abnormalities to the LUSS could improve its prognostic value. The objective of this study was to compare LUSS and CTSS for the monitoring of COVID-19 pulmonary involvement through: first, establishing the correlation of LUSS (± pleural abnormalities) and CTSS throughout admission; second, assessing agreement and measurement error between raters for LUSS, pleural abnormalities, and CTSS; third, evaluating the association of the LUSS (± pleural abnormalities) and CTSS with mortality at different timepoints. METHODS: This is a prospective, observational study, conducted during the second COVID-19 wave at the AmsterdamUMC, location VUmc. Adult COVID-19 ICU patients were prospectively included when a CT or a 12-zone LUS was performed at admission or at weekly intervals according to local protocol. Patients were followed 90 days or until death. We calculated the: (1) Correlation of the LUSS (± pleural abnormalities) and CTSS throughout admission with mixed models; (2) Intra-class correlation coefficients (ICCs) and smallest detectable changes (SDCs) between raters; (3) Association between the LUSS (± pleural abnormalities) and CTSS with mixed models. RESULTS: 82 consecutive patients were included. Correlation between LUSS and CTSS was 0.45 (95% CI 0.31-0.59). ICCs for LUSS, pleural abnormalities, and CTSS were 0.88 (95% CI 0.73-0.95), 0.94 (95% CI 0.90-0.96), and 0.84 (95% CI 0.65-0.93), with SDCs of 4.8, 1.4, and 3.9. The LUSS was associated with mortality in week 2, with a score difference between patients who survived or died greater than its SDC. Addition of pleural abnormalities was not beneficial. The CTSS was associated with mortality only in week 1, but with a score difference less than its SDC. CONCLUSIONS: LUSS correlated with CTSS throughout ICU admission but performed similar or better at agreement between raters and mortality prognostication. Given the benefits of LUS over CT, it should be preferred as initial monitoring tool.

6.
J Crit Care ; 76: 154272, 2023 08.
Article in English | MEDLINE | ID: covidwho-2245979

ABSTRACT

PURPOSE: COVID-19 associated pulmonary aspergillosis (CAPA) is associated with increased morbidity and mortality in ICU patients. We investigated the incidence of, risk factors for and potential benefit of a pre-emptive screening strategy for CAPA in ICUs in the Netherlands/Belgium during immunosuppressive COVID-19 treatment. MATERIALS AND METHODS: A retrospective, observational, multicentre study was performed from September 2020-April 2021 including patients admitted to the ICU who had undergone diagnostics for CAPA. Patients were classified based on 2020 ECMM/ISHAM consensus criteria. RESULTS: CAPA was diagnosed in 295/1977 (14.9%) patients. Corticosteroids were administered to 97.1% of patients and interleukin-6 inhibitors (anti-IL-6) to 23.5%. EORTC/MSGERC host factors or treatment with anti-IL-6 with or without corticosteroids were not risk factors for CAPA. Ninety-day mortality was 65.3% (145/222) in patients with CAPA compared to 53.7% (176/328) without CAPA (p = 0.008). Median time from ICU admission to CAPA diagnosis was 12 days. Pre-emptive screening for CAPA was not associated with earlier diagnosis or reduced mortality compared to a reactive diagnostic strategy. CONCLUSIONS: CAPA is an indicator of a protracted course of a COVID-19 infection. No benefit of pre-emptive screening was observed, but prospective studies comparing pre-defined strategies would be required to confirm this observation.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Humans , Incidence , COVID-19 Drug Treatment , Prospective Studies , Retrospective Studies
7.
Respir Care ; 68(3): 400-407, 2023 03.
Article in English | MEDLINE | ID: covidwho-2202184

ABSTRACT

BACKGROUND: Lung ultrasound (LUS) can be used to monitor critically ill patients with COVID-19, but the optimal number of examined lung zones is disputed. METHODS: This was a prospective observational study. The objective was to investigate whether concise (6 zones) and extended (12 zones) LUS scoring protocols are clinically equivalent in critically ill ICU subjects with COVID-19. The primary outcome of this study was (statistical) agreement between concise and extended LUS score index evaluated in both supine and prone position. Agreement was determined using correlation coefficients and Bland-Altman plots to detect systematic differences between protocols. Secondary outcomes were difference between LUS score index in supine and prone position using similar methods. RESULTS: We included 130 LUS examinations in 40 subjects (mean age 69.0 ± 8.5y, 75% male). Agreement between concise and extended LUS score index had no clinically relevant constant or proportional bias and limits of agreement were below the smallest detectable change. Across position changes, supine LUS score index was 8% higher than prone LUS score index and had limits above the smallest detectable change, indicating true LUS score index differences between protocols may occur due to the position change itself. Lastly, inter-rater and intra-rater agreement were very good. CONCLUSIONS: Concise LUS was equally informative as extended LUS for monitoring critically ill subjects with COVID-19 in supine or prone position. Clinicians can monitor patients undergoing position changes but must be wary that LUS score index alterations may result from the position change itself rather than disease progression or clinical improvement.


Subject(s)
COVID-19 , Humans , Male , Middle Aged , Aged , Female , Critical Illness , Lung/diagnostic imaging , Prospective Studies , Ultrasonography/methods
8.
Shock ; 58(5): 358-365, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2135832

ABSTRACT

ABSTRACT: Background: Aims of this study were to investigate the prevalence and incidence of catheter-related infection, identify risk factors, and determine the relation of catheter-related infection with mortality in critically ill COVID-19 patients. Methods: This was a retrospective cohort study of central venous catheters (CVCs) in critically ill COVID-19 patients. Eligible CVC insertions required an indwelling time of at least 48 hours and were identified using a full-admission electronic health record database. Risk factors were identified using logistic regression. Differences in survival rates at day 28 of follow-up were assessed using a log-rank test and proportional hazard model. Results: In 538 patients, a total of 914 CVCs were included. Prevalence and incidence of suspected catheter-related infection were 7.9% and 9.4 infections per 1,000 catheter indwelling days, respectively. Prone ventilation for more than 5 days was associated with increased risk of suspected catheter-related infection; odds ratio, 5.05 (95% confidence interval 2.12-11.0). Risk of death was significantly higher in patients with suspected catheter-related infection (hazard ratio, 1.78; 95% confidence interval, 1.25-2.53). Conclusions: This study shows that in critically ill patients with COVID-19, prevalence and incidence of suspected catheter-related infection are high, prone ventilation is a risk factor, and mortality is higher in case of catheter-related infection.


Subject(s)
COVID-19 , Catheter-Related Infections , Catheterization, Central Venous , Central Venous Catheters , Humans , Catheter-Related Infections/epidemiology , Catheter-Related Infections/etiology , Catheterization, Central Venous/adverse effects , Critical Illness , Incidence , Retrospective Studies , COVID-19/epidemiology , Central Venous Catheters/adverse effects , Risk Factors
9.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2053497

ABSTRACT

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


Subject(s)
COVID-19 , Microbiota , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Lung/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Respiration, Artificial , Tumor Necrosis Factor-alpha
10.
Lancet Respir Med ; 10(12): 1137-1146, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2008219

ABSTRACT

BACKGROUND: Vilobelimab, an anti-C5a monoclonal antibody, was shown to be safe in a phase 2 trial of invasively mechanically ventilated patients with COVID-19. Here, we aimed to determine whether vilobelimab in addition to standard of care improves survival outcomes in this patient population. METHODS: This randomised, double-blind, placebo-controlled, multicentre phase 3 trial was performed at 46 hospitals in the Netherlands, Germany, France, Belgium, Russia, Brazil, Peru, Mexico, and South Africa. Participants aged 18 years or older who were receiving invasive mechanical ventilation, but not more than 48 h after intubation at time of first infusion, had a PaO2/FiO2 ratio of 60-200 mm Hg, and a confirmed SARS-CoV-2 infection with any variant in the past 14 days were eligible for this study. Eligible patients were randomly assigned (1:1) to receive standard of care and vilobelimab at a dose of 800 mg intravenously for a maximum of six doses (days 1, 2, 4, 8, 15, and 22) or standard of care and a matching placebo using permuted block randomisation. Treatment was not continued after hospital discharge. Participants, caregivers, and assessors were masked to group assignment. The primary outcome was defined as all-cause mortality at 28 days in the full analysis set (defined as all randomly assigned participants regardless of whether a patient started treatment, excluding patients randomly assigned in error) and measured using Kaplan-Meier analysis. Safety analyses included all patients who had received at least one infusion of either vilobelimab or placebo. This study is registered with ClinicalTrials.gov, NCT04333420. FINDINGS: From Oct 1, 2020, to Oct 4, 2021, we included 368 patients in the ITT analysis (full analysis set; 177 in the vilobelimab group and 191 in the placebo group). One patient in the vilobelimab group was excluded from the primary analysis due to random assignment in error without treatment. At least one dose of study treatment was given to 364 (99%) patients (safety analysis set). 54 patients (31%) of 177 in the vilobelimab group and 77 patients (40%) of 191 in the placebo group died in the first 28 days. The all-cause mortality rate at 28 days was 32% (95% CI 25-39) in the vilobelimab group and 42% (35-49) in the placebo group (hazard ratio 0·73, 95% CI 0·50-1·06; p=0·094). In the predefined analysis without site-stratification, vilobelimab significantly reduced all-cause mortality at 28 days (HR 0·67, 95% CI 0·48-0·96; p=0·027). The most common TEAEs were acute kidney injury (35 [20%] of 175 in the vilobelimab group vs 40 [21%] of 189 in the placebo), pneumonia (38 [22%] vs 26 [14%]), and septic shock (24 [14%] vs 31 [16%]). Serious treatment-emergent adverse events were reported in 103 (59%) of 175 patients in the vilobelimab group versus 120 (63%) of 189 in the placebo group. INTERPRETATION: In addition to standard of care, vilobelimab improves survival of invasive mechanically ventilated patients with COVID-19 and leads to a significant decrease in mortality. Vilobelimab could be considered as an additional therapy for patients in this setting and further research is needed on the role of vilobelimab and C5a in other acute respiratory distress syndrome-causing viral infections. FUNDING: InflaRx and the German Federal Government.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Critical Illness/therapy , Respiration, Artificial , Treatment Outcome , Antibodies, Monoclonal , Double-Blind Method
11.
Brain Commun ; 4(4): fcac195, 2022.
Article in English | MEDLINE | ID: covidwho-1985044

ABSTRACT

Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients.

12.
Respir Care ; 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1964278

ABSTRACT

BACKGROUND: Given the long ventilation times of patients with COVID-19 that can cause atrophy and contractile weakness of respiratory muscle fibers, assessment of changes at the bedside would be interesting. As such, the aim of this study was to determine the evolution of respiratory muscle thickness assessed by ultrasound. METHODS: Adult (> 18 y old) patients admitted to the ICU who tested positive for SARS-CoV-2 and were ventilated for < 24 h were consecutively included. The first ultrasound examination (diaphragm, rectus abdominis, and lateral abdominal wall muscles) was performed within 24 h of intubation and regarded as baseline measurement. After that, each following day an additional examination was performed, for a maximum of 8 examinations per subject. RESULTS: In total, 30 subjects were included, of which 11 showed ≥ 10% decrease in diaphragm thickness from baseline; 10 showed < 10% change, and 9 showed ≥ 10% increase from baseline. Symptom duration before intubation was highest in the decrease group (12 [11-14] d, P = .03). Total time ventilated within the first week was lowest in the increase group (156 [129-172] h, P = .03). Average initial diaphragm thickness was 1.4 (1.1-1.6) mm and did not differ from final average thickness (1.3 [1.1-1.5] mm, P = .54). The rectus abdominis did not show statistically significant changes, whereas lateral abdominal wall thickness decreased from 14 [10-16] mm at baseline to 11 [9-13] mm on the last day of mechanical ventilation (P = .08). Mixed-effect linear regression demonstrated an association of atrophy and neuromuscular-blocking agent (NMBA) use (P = .01). CONCLUSIONS: In ventilated subjects with COVID-19, overall no change in diaphragm thickness was observed. Subjects with decreased or unchanged thickness had a longer ventilation time than those with increased thickness. NMBA use was associated with decreased thickness. Rectus muscle thickness did not change over time, whereas lateral abdominal muscle thickness decreased but this change was not statistically significant.

13.
Clin Transl Sci ; 15(4): 854-858, 2022 04.
Article in English | MEDLINE | ID: covidwho-1625873

ABSTRACT

Recently, we reported the phase II portion of the adaptive phase II/III PANAMO trial exploring potential benefit and safety of selectively blocking C5a with the monoclonal antibody vilobelimab (IFX-1) in patients with severe coronavirus disease 2019 (COVID-19). The potent anaphylatoxin C5a attracts neutrophils and monocytes to the infection site, causes tissue damage by oxidative radical formation and enzyme releases, and leads to activation of the coagulation system. Results demonstrated that C5a inhibition with vilobelimab was safe and secondary outcomes appeared in favor of vilobelimab. We now report the pharmacokinetic/pharmacodynamic (PK/PD) analysis of the phase II study. Between March 31 and April 24, 2020, 30 patients with severe COVID-19 pneumonia confirmed by real-time polymerase chain reaction were randomly assigned 1:1 to receive vilobelimab plus best supportive care or best supportive care only. Samples for measurement of vilobelimab, C3a and C5a blood concentrations were taken. Vilobelimab predose (trough) drug concentrations in plasma ranged from 84,846 to 248,592 ng/ml (571 to 1674 nM) with a geometric mean of 151,702 ng/ml (1022 nM) on day 2 and from 80,060 to 200,746 ng/ml (539 to 1352 nM) with a geometric mean of 139,503 ng/ml (939 nM) on day 8. After the first vilobelimab infusion, C5a concentrations were suppressed in the vilobelimab group (median 39.70 ng/ml 4.8 nM, IQR 33.20-45.55) as compared to the control group (median 158.53 ng/ml 19.1 nM, IQR 60.03-200.89, p = 0.0006). The suppression was maintained on day 8 (p = 0.001). The current PK/PD analysis shows that vilobelimab efficiently inhibits C5a in patients with severe COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Clinical Trials, Phase II as Topic , Complement C3a , Complement C5a , Humans , Randomized Controlled Trials as Topic
14.
Alzheimer's & Dementia ; 17(S5):e057841, 2021.
Article in English | Wiley | ID: covidwho-1589190

ABSTRACT

Background COVID-19 is a respiratory disease where neurological sequelae are frequently reported. Neurofilament light (NfL) in plasma is a validated biomarker for neuronal damage. We assessed the trajectory of NfL levels in intensive care unit (ICU) patients diagnosed with COVID-19, and studied its relationship to clinical outcomes and markers of hypothesized pathophysiological mechanisms. Method As part of the Art-Deco study and Amsterdam UMC COVID-biobank, longitudinal samples and clinical data were collected weekly from a cohort of 31 prospectively admitted ICU patients with a minimum of 7 days of ventilation. The mean±sd age was 63±11 years. Admission duration ranged from 14-35 days and 156 samples were collected. We evaluated the NfL trajectory over time, and whether this trajectory differed by 90-day mortality outcome. Due to the non-linear trajectory of NfL, we applied linear mixed models including cubic splines for the time variable. Secondly, we tested whether baseline or peak NfL levels predicted mortality (n=7/31), delirium incidence after detubation (n=18/22), and duration of delirium (6±6 days). Third, we assessed if disease severity (day 7 Sequential Organ Failure Assessment [SOFA] score) and baseline hypoxemia (pAO2 before intubation), inflammation (IL1-b, IL-6, IL-8, TNF-α), and coagulopathy (d-dimer, presence of pulmonary embolism) were predictive of the NfL trajectory. For the latter models, we included an interaction term for the pathophysiological markers in the linear mixed models. All models were adjusted for age. Result NfL increased during ICU admission (p<001), and persisted longer in the non-survivors (p<0.05;Figure 1). Baseline or maximum NfL was not predictive of mortality or delirium incidence. However, maximum NfL correlated to the duration of delirium (r=0.5;p=0.02). From the pathophysiological markers, SOFA scores (p<0.05) and baseline TNF-α (p<0.05) were related to a stronger increase of NfL over time. Conclusion NfL levels increased over time and plateaued after 2-3 weeks in most COVID-19 patients at the ICU. Peak levels of NfL were predictive of delirium persistence. Repeated NfL levels may provide a future method for monitoring neurological outcomes in sedated ICU patients. Disease severity and specific inflammatory components appear important predictors of the NfL trajectory reflecting axonal damage in severe COVID-19 patients.

15.
Int J Cardiol ; 349: 157-165, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1549827

ABSTRACT

BACKGROUND: Compelling evidence has shown cardiac involvement in COVID-19 patients. However, the overall majority of these studies use data obtained during the first wave of the pandemic, while recently differences have been reported in disease course and mortality between first- and second wave COVID-19 patients. The aim of this study was to analyze and compare cardiac pathology between first- and second wave COVID-19 patients. METHODS: Autopsied hearts from first- (n = 15) and second wave (n = 10) COVID-19 patients and from 18 non-COVID-19 control patients were (immuno)histochemically analyzed. CD45+ leukocyte, CD68+ macrophage and CD3+ T lymphocyte infiltration, cardiomyocyte necrosis and microvascular thrombosis were quantified. In addition, the procoagulant factors Tissue Factor (TF), Factor VII (FVII), Factor XII (FXII), the anticoagulant protein Dipeptidyl Peptidase 4 (DPP4) and the advanced glycation end-product N(ε)-Carboxymethyllysine (CML), as markers of microvascular thrombogenicity and dysfunction, were quantified. RESULTS: Cardiac inflammation was significantly decreased in second wave compared to first wave COVID-19 patients, predominantly related to a decrease in infiltrated lymphocytes and the occurrence of lymphocytic myocarditis. This was accompanied by significant decreases in cardiomyocyte injury and microvascular thrombosis. Moreover, microvascular deposits of FVII and CML were significantly lower in second wave compared to first wave COVID-19 patients. CONCLUSIONS: These results show that in our cohort of fatal COVID-19 cases cardiac inflammation, cardiomyocyte injury and microvascular thrombogenicity were markedly decreased in second wave compared to first wave patients. This may reflect advances in COVID-19 treatment related to an increased use of steroids in the second COVID-19 wave.


Subject(s)
COVID-19 Drug Treatment , Humans , Inflammation , Pandemics , SARS-CoV-2
16.
ERJ Open Res ; 7(4)2021 Oct.
Article in English | MEDLINE | ID: covidwho-1518253

ABSTRACT

During the virtual European Respiratory Society Congress 2020, early career members summarised the sessions organised by the Respiratory Intensive Care Assembly. The topics covered included diagnostic strategies in patients admitted to the intensive care unit with acute respiratory failure, with a focus on patients with interstitial lung disease and for obvious reasons, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These sessions are summarised in this article, with take-home messages highlighted.

17.
Crit Care Med ; 50(5): 750-759, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1440663

ABSTRACT

OBJECTIVES: To determine the diagnostic accuracy of extended lung ultrasonographic assessment, including evaluation of dynamic air bronchograms and color Doppler imaging to differentiate pneumonia and atelectasis in patients with consolidation on chest radiograph. Compare this approach to the Simplified Clinical Pulmonary Infection Score, Lung Ultrasound Clinical Pulmonary Infection Score, and the Bedside Lung Ultrasound in Emergency protocol. DESIGN: Prospective diagnostic accuracy study. SETTING: Adult ICU applying selective digestive decontamination. PATIENTS: Adult patients that underwent a chest radiograph for any indication at any time during admission. Patients with acute respiratory distress syndrome, coronavirus disease 2019, severe thoracic trauma, and infectious isolation measures were excluded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Lung ultrasound was performed within 24 hours of chest radiograph. Consolidated tissue was assessed for presence of dynamic air bronchograms and with color Doppler imaging for presence of flow. Clinical data were recorded after ultrasonographic assessment. The primary outcome was diagnostic accuracy of dynamic air bronchogram and color Doppler imaging alone and within a decision tree to differentiate pneumonia from atelectasis. Of 120 patients included, 51 (42.5%) were diagnosed with pneumonia. The dynamic air bronchogram had a 45% (95% CI, 31-60%) sensitivity and 99% (95% CI, 92-100%) specificity. Color Doppler imaging had a 90% (95% CI, 79-97%) sensitivity and 68% (95% CI, 56-79%) specificity. The combined decision tree had an 86% (95% CI, 74-94%) sensitivity and an 86% (95% CI, 75-93%) specificity. The Bedside Lung Ultrasound in Emergency protocol had a 100% (95% CI, 93-100%) sensitivity and 0% (95% CI, 0-5%) specificity, while the Simplified Clinical Pulmonary Infection Score and Lung Ultrasound Clinical Pulmonary Infection Score had a 41% (95% CI, 28-56%) sensitivity, 84% (95% CI, 73-92%) specificity and 68% (95% CI, 54-81%) sensitivity, 81% (95% CI, 70-90%) specificity, respectively. CONCLUSIONS: In critically ill patients with pulmonary consolidation on chest radiograph, an extended lung ultrasound protocol is an accurate and directly bedside available tool to differentiate pneumonia from atelectasis. It outperforms standard lung ultrasound and clinical scores.


Subject(s)
COVID-19 , Pneumonia , Pulmonary Atelectasis , Adult , Critical Illness , Humans , Lung/diagnostic imaging , Pneumonia/diagnostic imaging , Prospective Studies , Pulmonary Atelectasis/diagnostic imaging , Sensitivity and Specificity , Ultrasonography/methods
18.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1430195

ABSTRACT

INTRODUCTION: The diaphragm is the main muscle of inspiration, and its dysfunction contributes to adverse clinical outcomes in critically ill patients. We recently reported the infiltration of SARS-CoV-2, and the development of fibrosis, in the diaphragm of critically ill patients with COVID-19. In the current study, we aimed to characterise myofiber structure in the diaphragm of critically ill patients with COVID-19. METHODS: Diaphragm muscle specimens were collected during autopsy from patients who died of COVID-19 in three academic medical centres in the Netherlands in April and May 2020 (n=27). We studied diaphragm myofiber gene expression and structure and compared the findings obtained to those of deceased critically ill patients without COVID-19 (n=10). RESULTS: Myofibers of critically ill patients with COVID-19 showed on average larger cross-sectional area (slow-twitch myofibers: 2441±229 vs 1571±309 µm2; fast-twitch myofibers: 1966±209 vs 1225±222 µm2). Four critically ill patients with COVID-19 showed extremely large myofibers, which were splitting and contained many centralised nuclei. RNA-sequencing data revealed differentially expressed genes involved in muscle regeneration. CONCLUSION: Diaphragm of critically ill patients with COVID-19 has distinct myopathic features compared with critically ill patients without COVID-19, which may contribute to the ongoing dyspnoea and fatigue in the patients surviving COVID-19 infection.


Subject(s)
COVID-19 , Critical Illness , Diaphragm/pathology , Aged , Autopsy , COVID-19/pathology , Female , Humans , Male , Middle Aged , Muscle Fibers, Skeletal/pathology , Netherlands
20.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Article in English | MEDLINE | ID: covidwho-1275790

ABSTRACT

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Subject(s)
COVID-19/therapy , Imatinib Mesylate/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Capillary Permeability/drug effects , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Double-Blind Method , Female , Humans , Imatinib Mesylate/adverse effects , Male , Middle Aged , Netherlands , Oxygen/administration & dosage , Placebos/administration & dosage , Placebos/adverse effects , Protein Kinase Inhibitors/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL